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Summary 
 
This document describes statistical procedures for quantifying the uncertainty associated with a 
single retrieval of a chlorophyll algorithm using a data base of coincident optical properties and 
chlorophyll-a concentration measured in situ.  The procedures are actually more general than just 
chlorophyll and would apply to any property that varies over several orders of magnitude.  
Explicit equations are given, and the method is demonstrated by quantifying the uncertainty of 
the SeaWiFS chlorophyll algorithm, OC4.v4, using the newly published NASA bio-Optical 
Marine Algorithm Data set (NOMAD, Werdell et al. 2005).   
 
Chlorophyll ranges over four orders of magnitude globally, from 0.01 to 100 mg m-3, and is 
approximately lognormally distributed within discrete water masses (Campbell, 1995).  The 
chlorophyll algorithm should perform well over the range of concentrations found globally.  
Thus, the in situ chlorophyll measurements are log-transformed, and the algorithm retrieval error 
is defined as the difference between the logarithm of the algorithm-derived chlorophyll, Ĉ , and 
the log-transformed in situ chlorophyll, C.  Uncertainty is then characterized by the mean error 
(bias) and root-mean-square error (RMSE). While these statistics are useful in comparing 
different algorithms, they are difficult to interpret because the units are decades of log. It is 
desirable to express uncertainty in the algorithm as a relative or percentage error.  For each 
retrieval, the relative error can be derived from the log error with a simple inverse log transform, 
but the same relationship does not hold for the error statistics.  Statistics on relative errors can be 
derived empirically from the data or, if the log errors are normally distributed, from the log error 
statistics.  A lognormal assumption is reasonable for the chlorophyll algorithm, and thus the 
mean, median and standard deviation of the relative or percentage error can be derived from the 
statistics of the log errors.  Equations are provided for converting log-based error statistics to 
percentage error statistics.   
 
Issues related to the distribution of the in situ data vis-à-vis the global chlorophyll distribution 
are addressed. In situ databases tend to over-represent high-chlorophyll waters because more 
data are collected in coastal regions than in the open ocean.  We derived weighted error statistics 
that compensate for differences between the data distribution and the distribution of chlorophyll 
found globally.  In addition to prescribing a method for quantifying uncertainty, we also describe 
methods found in the literature which are incorrect or misleading. 
 
All procedures described in this paper are illustrated with the SeaWiFS chlorophyll algorithm, 
OC4.v4 (O’Reilly et al. 2000) and evaluated using a subset of the newly published NOMAD 
data set (Werdell et al. 2005).  The subset contains data from 2208 stations for which there were 
measurements of the remote-sensing reflectance, Rrs(λ), at wavelengths λ = 411, 443, 489, 510, 
and 555, and a coincident measurement of the upper-layer chlorophyll concentration.  These 
wavelengths correspond to the first 5 bands of SeaWiFS. 
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The chlorophyll algorithm 
 
The SeaWiFS project currently uses the OC4.v4 chlorophyll algorithm (O’Reilly et al. 2000): 
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and the coefficients a0, a1, a2, a3, a4 are 0.366, -3.067, 1.930, 0.649, and -1.532, respectively.  A 
new set of coefficients was obtained by fitting the polynomial to the NOMAD data.  Herein the 
algorithm using the fitted polynomial is called OC4.fit.   
 

 
 
 
Errors associated with log-log regressions  
 
In fitting a polynomial to log- log data, the resulting curve minimizes the mean squared error 
(MSE) between the logarithm of the predicted chlorophyll and the logarithm of the measured 
chlorophyll.  The R2 associated with the fitted polynomial is a measure of goodness of fit 
between the log-transformed data and the curve.  In regressions of predicted vs. measured 
chlorophyll, however, the R2 is not a measure of the algorithm performance.  This and other 
misleading methods are discussed later. 
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Fig. 1.  NOMAD chlorophyll vs. max Rrs ratio on log- log scale.  Also shown are the 
OC4.v4 algorithm (red line) and a 4th-order polynomial fitted to the data (OC4.fit ). 
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Definition of errors  
 
The error associated with the ith data point is defined as:   
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The δ i distributions associated with the two OC4 algorithms are approximately normally 
distributed (Fig. 2), and thus the ratio ii CĈ is approximately lognormally distributed.  In figure 

2, the horizontal axis is linear in δ i but labeled in terms of the ratio ii CĈ on a log scale.   

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

Two metrics for comparing algorithms derived from the δ i sample are the mean error:  
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and the square root of the mean squared error (RMSE) where the mean square error is: 
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Fig. 2 -  Histograms of the δ i errors as defined in equation (3) for the two algorithms. 
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The MSE can also be derived from the sample mean (m = bias) and variance (s2) as: 
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The RMSE can serve as a single metric because it combines both the mean and variance of the 
error distribution.  However, the bias should be considered as well because it represents an error 
that cannot be reduced by spatial averaging.   
 
Table 1 lists the error statistics associated with the error histograms shown in figure 2.  Note that 
by fitting the algorithm to this data set the average error (bias) was eliminated and RMSE was 
minimized. 
 

Table 1.  Error statistics for the OC4 chlorophyll algorithms. 
algorithm N bias RMSE R2 
OC4.v4 2208 -0.047 0.256 0.85 
OC4.fit 2208 0.000 0.245 0.86 

 

 

Table 1 gives estimates of the bias and RMSE for the δ i sample, but what do these tell us about 
the relative error?  What about the mean and “one standard deviation” range of relative errors?   

 

Relationship between log errors and relative errors  

  

The relative error is defined as:  
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and the percentage error as irelerr%100 ⋅ . For each data point, there is a unique relationship 
between δ i and relerri: 
 
                                                 
1 This equation is provided for those who use the formuli for sample mean and variance in 
spreadsheets or statistical software.  The variance must be multiplied by (N-1)/N to get exactly 
the same result as that based on equation (5).   
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Statistics of the relative errors can be calculated empirically from the data, or they can be 
estimated from the statistics in Table 1 given the reasonable assumption that the δ i are normally 
distributed (Fig. 2).   
 
Using  the  lognormal assumption 
 
To estimate relative error statistics from the log error statistics, we assume that the log error δ is 
normally distributed with mean m and standard deviation s:   
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where m = bias.  Under this assumption, the ratio CĈ  is lognormally distributed.  Its mean, 
median, and standard deviation are: 
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 std dev = mean 1)Sexp( 2 −  (12) 
 
where M = m ln(10) and S = s ln(10) are the mean and standard deviation of )CĈln( .  The “one 

sigma” range for the CĈ  ratio about its median value is: 
 

 lower = ( )SMexp −  (13) 

 upper = ( )SMexp +  (14) 
 
Under the lognormal assumption, 68% of all ratios will lie within this range.  
 
Statistics for percentage errors calculated empirically and based on the lognormal assumption 
(eqs. 9-14) are listed in Table 2.  The mean and median percentage errors are derived by 
subtracting 1 from the mean (eq. 10) or median (eq. 11) and then multiplying by 100%.   The 
standard deviation is the standard deviation of CĈ  (eq. 12) multiplied by 100%.  The lower 

rows of Table 2 provide the median (50%) and “one standard deviation” range of the CĈ  ratio 
corresponding to the lower (16%) and upper (84%) percentiles associated with ±1 standard 
deviation. The values given under the empirical column were derived from the actual percentiles 
in the sample rather than using the lognormal assumption. 
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Table 2.  Statistics of the percentage errors and CĈ  ratios 
associated with the chlorophyll algorithms based on the 
NOMAD subset.  

 Empirical Lognormal 
relerr (%) OC4.v4 OC4.fit OC4.v4 OC4.fit 

mean 6% 17% 6% 17% 
median -8% 4% -10% 0% 
std dev 66% 68% 67% 72% 

CĈ  based on percentiles from eqns. (11) - (14) 

lower 0.50 0.58 0.50 0.57 
median 0.92 1.04 0.90 1.00 
upper 1.54 1.70 1.60 1.76 

 
 
The first thing to notice is that the errors are no longer unbiased; the mean relative error is 
positive.  If the log-error bias is zero, as is the case with the OC4.fit, then the median relative 
error is also zero under the lognormal assumption.   The second point is that the standard 
deviations are quite large; it doesn’t make sense to think of relative errors as having a range of 
±3 standard deviations as would be the case if they were normally distributed. 
 
Expressing uncertainty in terms of  ±1 standard deviation has meaning if the distribution is 
symmetric about the mean, but in the case of large relative errors, the distribution is skewed.  
Negative errors cannot be larger than -100% whereas positive errors can be arbitrarily large.  Use 
of the log error δ helps to alleviate this problem, but then the units are decades of log which are 
not easily interpreted.  Error histograms (Fig. 2) are a good way to express errors, where the 
horizontal axis is on a log scale.  The axis can be labeled to express the log error (δ) as 
percentage errors or ratios.  The symmetry of the log error (δ) distribution about its mean makes 
it clear that  +100% is equivalent to -50%.   
 
Predicted vs. measured chlorophyll 
 
A common way to evaluate an algorithm is to plot the algorithm-predicted value against the 
measured value (Fig. 3), and to show both the one-to-one line and a regression of the two.  The 
regression should have a slope of 1 and an intercept of 0, but often this is not the case.  The R2 of 
such a regression is not a measure of the accuracy of the algorithm as is clearly evident in figure 
3.  However, such plots are useful for showing systematic trends in the errors.  The algorithm 
used in figure 3 was neither of the OC4 algorithms described earlier.   
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Metrics used by the SeaBAM workshop 
 
The OC4.v4 algorithm was selected based on metrics that were prescribed by participants at the 
SeaWiFS Bio-optical Algorithm Mini (SeaBAM) Workshop held in January 1997.  The metrics 
called for 4 diagnostic plots (Fig. 4).  
 
The plots include a log-log plot of the algorithm vs. in situ chlorophyll, and a derived regression.  
The goals for an acceptible algorithm were that the regression meet the following criteria :  slope 
= 1 ± 0.01; intercept = 0. ± 0.01; bias = 0 ± 0.01; RMSE < 0.185; R2 > 0.9; no negatives; and few 
outliers ( CĈ  > 5 or  < 0.2) .   
 
Three additional diagnostic plots and criteria were:  (1) the histogram of log-based errors (e.g., 
Figs. 2 and 4c) should be symmetric about zero; (2) histograms of the derived and measured 
chlorophyll (4d) should be congruent; and (3) quantile-quantile plots (4b) should be linear, 
overlap the 1:1 line, and have no discontinuities.   
 
To derive the quantile-quantile plots, the derived and measured chlorophyll values are sorted 
separately, and the sorted arrays plotted against one another.  This plot reveals any systematic 
differences in the frequency distribution of the two data sets (measured vs. predicted).   
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Fig. 3 – Plot of predicted vs. measured chlorophyll (log- log) for an algorithm with systematic 
errors.  The relatively high R2 associated with the regression (dashed line) is not sufficient 
evidence of a good algorithm since the slope and intercept are not 1 and 0, respectively. 
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Fig. 4.  Diagnostic plots recommended by participants at the SeaBAM workshop, and 
subsequently used by the SeaWiFS project to select the OC4.v4 algorithm.  These plots and 
related statistics were used to evaluate candidates for the at- launch chlorophyll algorithm for 
SeaWiFS.  Shown here are statistics for the OC4.v4 algorithm compared with an in situ data 
set derived from the SeaWiFS Bio-optical Archive (SeaBASS).  Details about this algorithm 
and the in situ data set may be found in the NASA Technical Memorandum 2000-206892, 
Volume 11.  This figure appears in figure 9 (pg. 18) of that publication and the notation is 
unchanged.  aC  is the predicted chlorophyll and aC

~
 is the in situ chlorophyll. 
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Mistakes found in the literature  
 
A number of erroneous estimates of the relative uncertainty in chlorophyll algorithms have 
appeared in the literature.  One is to define relative uncertainty as i%100 δ⋅  (Fig. 5).  If errors are 
small, and the natural logarithm is used instead of the base-10 logarithm, then one could 
approximate relative errors by ).ClnĈ(ln%100 ii −⋅  This stems from the fact that  
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This estimate of the relative error is also plotted on figure 5 (red line).  It lies closer to the 1:1 
line near the origin, but still deviates for errors greater than ± 10%. 
 

 
 

Fig. 5.  Plot showing that 100% δi is not the relative error. 
 
Another mistake is to claim that 1- R2 is the percentage error.  One reasons that if R2 is the 
percentage of the variance explained by the algorithm, then 1- R2 is the percentage unexplained, 
hence the percentage error.  If the R2 used is that associated with the regression of predicted vs. 
measured, then this is definitely wrong since, as already explained, the R2 in this type of 
regression is not a measure of the accuracy of the algorithm.  However, the R2 associated with a 
polynomial fit (e.g., that shown in figure 1) is a measure of the fit, and does relate to the 
percentage of the variance explained by the fitted curve.  However, it is a percentage of the 
variance explained in log Chl, not Chl.  In the case of the OC4.fit algorithm, the total variance in 
log Chl was 0.4285 and the R2 was 0.86.  Therefore, the unexplained variance was 0.14 x 0.4285 
= 0.0600, and the standard error (square root of the error variance) is 0.245.  This is the same as 
the RMSE.   
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Fig. 6 – Histograms of chlorophyll data. NOMAD data 
distribution (blue) is compared with global distribution 
in the SeaWiFS climatology (1997-2005) (red). 

 
 
Adjusting for the distribution of chlorophyll 
 
One problem with using a dataset such as NOMAD is that the distribution of the data is not 
representative of the distribution of chlorophyll globally (Fig. 6).   
 
 
 
 
   
 
  
 
 
 
 
 
 
 
 
 
 
 

 
  Fig. 7.  Errors in the OC4 algorithm plotted against in situ Chl.  The smallest errors are 
near the mode of the global Chl distribution shown in red. 
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Ideally, an algorithm should have the same uncertainty everywhere, that is, in high as well as low 
chlorophyll waters.  To assess this, one should plot algorithm errors against chlorophyll (Fig. 7).  
It is immediately clear that the algorithm errors increase with increasing chlorophyll, and that the 
smallest errors are in the most probable areas (i.e., near the mode).   By using the NOMAD data 
to assess the performance of an algorithm, results are biased by its relative poor performance in 
high chlorophyll waters. 
 
To explore how the distribution of the NOMAD chlorophyll data affects our assessment of the 
RMSE, we computed the cumulative RMSE for all stations with chlorophyll below each 
measured Chl.  These are plotted in figure 8 for the two algorithms. 
 

 
The lowest RMSE achieved with these algorithms is that of the OC4.v4 algorithm which has 
RMSE = 0.15 at chlorophyll levels below 0.2 mg m-3.  Based on the cumulative frequency curve, 
this is representative of 65% of the ocean.  The RMSE = 0.20 is representative of 93% of the 
ocean where chlorophyll is below 1 mg m-3.  The RMSE values based on all the NOMAD data 
are 0.256 for OC4.v4 and 0.245 for OC4.fit.   These values are clearly biased by the over-
representation of high chlorophylls in that data set.   
 

65%

93%

0.26

0.15
RMSE=0.20

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.01 0.1 1 10 100

In situ Chl

Global

OC4.v4

OC4.fit

 
Fig. 8.  The blue and green curves are the cumulative RMSEs for the two algorithms for 
stations with chlorophyll less than the value shown on the horizontal axis.  Also shown is 
the cumulative distribution of Chl from the SeaWiFS climatology (1997-2005).  
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Weighted statistics 
 
To arrive at a more globally representative assessment of an algorithm’s uncertainty, its errors 
should be weighted to reflect the global distribution of chlorophyll.  Figure 9 shows the bias and 
RMS errors within narrow bins along the log(Chl) axis.  These were weighted by the relative 
frequency in each bin to arrive at more representative metrics for the performance of the 
algorithms (Table 3). 
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Fig. 9.  Error statistics within narrow bins in log(Chl). 
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Table 3.  Globally representative error statistics arrived at by weighting binned statistics 
(Fig. 9) by the frequency in each log(Chl) bin as determined by the 1997-2005 SeaWiFS 
climatology (Fig. 6).  Results are shown in the two right columns.  The unweighted 
results previously presented (Tables 1 and 2) are shown on the left for comparison. 

 Unweighted Statistics Weighted Statistics 
 OC4.v4 OC4.fit OC4.v4 OC4.fit 

δ (log units) 

bias -0.047 0.000 -0.006 0.047 
RMSE 0.256 0.245 0.193 0.199 

relerr (%) 

mean 6% 17% 9% 23% 
median -10% 0% -1% 11% 
std dev 67% 72% 51% 58% 

CĈ  

lower 0.50 0.57 0.63 0.71 
median 0.90 1.00 0.99 1.11 
upper 1.60 1.76 1.54 1.74 

 
 
 
Discussion and conclusions  
 
Metrics for evaluating the uncertainty of a chlorophyll algorithm have been presented.  These 
procedures can be applied to evaluate other algorithms or predictive models where the dynamic 
range of interest spans several orders of magnitude and calls for relative rather than absolute 
errors.  We recommend that the error be defined as the difference between log-transformed 
values of predicted and measured chlorophyll. A large data set such as NOMAD can be used to 
create a statistical sample of errors that can be characterized in terms of the mean error (bias) and 
root-mean-square error (RMSE). In the example of the OC4 algorithm described here, the log 
errors were normally distributed, and thus the ratio of predicted to measured was lognormally 
distributed. Statistics of the relative errors can be derived from the same data set, or estimated 
based on an assumed normal distribution of the log errors.     
 
There are two problems associated with the use of the NOMAD data to evaluate algorithms.  
One is that its chlorophyll distribution is quite different from that of the world’s ocean.  Thus, 
adjustments should be made to account for differences between the distributions.  Calculation of 
a cumulative RMS error (fig. 8) is an informative way to assess the effects of the errors as a 
function of the chlorophyll level.  This was appropriate in the case of the NOMAD data and the 
OC4 algorithms which performed better at low chlorophyll levels than in high chlorophyll areas.  
On the other hand, if there are large errors at the low end of the chlorophyll distribution, the 
cumulative RMS will be inflated by those errors thoughout its range.  A more rigorous approach 
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is to sort the data into bins defined for different ranges of log Chl, calculate the bias and RMS 
errors in each bin, and weight the results by the global frequency of chlorophyll associated with 
each bin.  When this was done, the OC4.v4 algorithm performed better than the OC4.fit 
algorithm that was fitted to the NOMAD data. 
 
A second problem concerns the fact that the NOMAD data have been used in parameterizing the 
algorithms.  In principle, the data used to evaluate an algorithm’s performance should be 
independent from the data used to parameterize the algorithm.  At the Ocean Color Bio-optical 
Algorithm Mini Workshop (OCBAM) held at the University of New Hampshire in September 
2005, participants debated the importance of this requirement.  Some argued that the data should 
be randomly divided into two data sets and only one set used to parameterize the algorithm, 
while the other set used to evaluate it.  Others argued that this would prove very little because 
half the data randomly selected would have essentially the same distribution as the whole data 
set. It was decided instead to create a data set in which chlorophyll measured in situ is matched 
with satellite radiances measured by SeaWiFS or MODIS.  The in situ data will not include any 
of the NOMAD data.  This data set will be used to evaluate algorithms.   
 
The Ocean Biology Data Processing Group at NASA Goddard is prepared to run algorithm codes 
and produce metrics for anyone wishing to have an algorithm considered as a candidate for the 
next generation of ocean color algorithms.  The OCBAM participants concluded that little 
improvement in the chlorophyll algorithm can be achieved without accounting for the effects of 
other optically active constituents.  It is generally believed that this will require a model-based 
algorithm instead of the empirical algorithms such as OC4. 
 
Since the early days of the Coastal Zone Color Scanner, the goal has been to achieve a 
chlorophyll algorithm that was accurate to within ±35%.  Many claims have been made that this 
goal has been achieved, and yet the accuracy of the OC4.v4 algorithm has much less accuracy 
according to the methods described here.  After adjusting for the distribution of chlorophyll 
globally, the algorithm is accurate to within ±50% of the median (based on the standard 
deviation of the relative error).  The algorithm-derived chlorophyll would be on average 9% 
higher than an in situ chlorophyll, but log-transformed chlorophyll values are nearly unbiased. 
 
Where did the ±35% specification come from?  According to Jim Mueller, who was a member of 
the Nimbus Experiment Team for the CZCS (pers. comm.), it was understood that the in situ 
methods for measuring chlorophyll concentration were no more accurate than ±35%, and 
therefore, the satellite algorithm should not be held to a higher accuracy.  This became the goal 
for the chlorophyll algorithm accuracy.  Because it has been generally believed that this goal was 
achieved, many erroneous methods have been employed to substantiate this claim. 
 
We have demonstrated that the uncertainty in the SeaWiFS algorithm is approximately 50% 
globally and that the lowest uncertainty is associated with oligotrophic areas where chlorophyll 
is less than 0.2 mg m-3.  Empirical algorithms such as OC4.v4 are parameterized by fitting 
polynomials to log-transformed data, and this results in lognormally distributed errors whose 
statistics can be estimated from the statistics of the errors in log Chl. 
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Finally, we have pointed out several erroneous methods for estimating the relative uncertainty of 
the algorithm, and have shown that measures of uncertainty based on a large in situ database 
such as NOMAD are sensitive to the distribution of the data in the database.   
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